2024-02-11 13:20:27 +0000 UTC
Cherry Pickup II
Categories:
Links
Code
class Solution:
def cherryPickup(self, grid: List[List[int]]) -> int:
n = len(grid)
m = len(grid[0])
# Create 3D DP table with initial values of 0
dp = [[[0] * m for _ in range(m)] for _ in range(n)]
# Set the starting point value (top-left and top-right corner)
cherries = 0
dp[0][0][m - 1] = grid[0][0] + grid[0][m - 1]
# Iterate through each row from second onwards
for i in range(1, n):
# Iterate through each column for robot 1
for j in range(m):
# Iterate through each column for robot 2
for k in range(m):
# Skip invalid states:
# - Both robots in the same row (j > i)
# - Robot 2 left of robot 1 (k < m - i - 1)
# - Robot 1 further right than robot 2 (j > k)
if j > i or k < m - i - 1 or j > k:
continue
# Base case: no moves possible, use previous state
dp[i][j][k] = dp[i - 1][j][k]
# Explore moves for robot 1:
# - Up-diagonal with robot 2 at same position
if j - 1 >= 0:
dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j - 1][k])
# - Up-diagonal with robot 2 one step left/right
if j - 1 >= 0 and k - 1 >= 0:
dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j - 1][k - 1])
if j - 1 >= 0 and k + 1 < m:
dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j - 1][k + 1])
# Explore moves for robot 2:
# - Up-diagonal with robot 1 at same position
if j + 1 < m:
dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j + 1][k])
# - Up-diagonal with robot 1 one step left/right
if j + 1 < m and k - 1 >= 0:
dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j + 1][k - 1])
if j + 1 < m and k + 1 < m:
dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j + 1][k + 1])
# Explore horizontal moves for both robots:
# - Both robots move left
if k - 1 >= 0:
dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j][k - 1])
# - Both robots move right
if k + 1 < m:
dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j][k + 1])
# Add cherries only if robots are in different positions
if j != k:
dp[i][j][k] += grid[i][j] + grid[i][k]
else:
dp[i][j][k] += grid[i][j] # Only one robot picks if they land in the same cell
# Update maximum cherries collected so far
cherries = max(cherries, dp[i][j][k])
return cherries